# Sustainable and Renewable Energy Development Authority (SREDA)

Power Division, Ministry of Power, Energy and Mineral Resources

3<sup>rd</sup> Energy Auditor Certification Examination-2022

| Paper- 1 |
|----------|
|----------|

Candidate's Roll No.

| 2 0 2 2 1 1   1 |
|-----------------|
|-----------------|



### Paper 1: Fundamentals of Energy Management and Energy Audit Total Marks- 150, Time- 3.00 Hours, Date: 25 November 2022

#### • Important Instruction:

- 1. This Paper has 50 MCQs + 8 Short Questions + 6 Long Questions = Total 64 Questions.
- 2. Mark indicated on the right side of each question.
- 3. Fill in correct circle with permanent ink ballpoint pen shown on the top sheet only corresponding to the MCQ given in Section A.
- 4. Answer in the blank space provided after each question (short/long).
- 5. Do not put any sign or write anything on the answer script except written answer.
- 6. Any unfair means, peer talking, keeping any communication device and misbehavior will lead to cancellation of examination.

#### MCQ Answer (Section A):

| 1  | (A) (B) | © | D   | 18 | A | В          | (C)      | D        | 35 | A | В | © | D        |
|----|---------|---|-----|----|---|------------|----------|----------|----|---|---|---|----------|
| 2  | A B     | © | D   | 19 | A | В          | ©        | D        | 36 | A | В | © | D        |
| 3  | (A) (B) | © | D   | 20 | A | В          | ©        | D        | 37 | A | В | © | D        |
| 4  | A B     | © | D   | 21 | A | В          | 0        | D        | 38 | A | В | © | D        |
| 5  | (A) (B) | © | D   | 22 | A | B          | <b>©</b> | D        | 39 | A | B | © | D        |
| 6  | A B     | © | D   | 23 | A | В          | ©        | D        | 40 | A | В | © | D        |
| 7  | (A) (B) | © | D   | 24 | A | lacksquare | <b>©</b> | D        | 41 | A | В | © | D        |
| 8  | (A) (B) | © | D   | 25 | A | В          | ©        | <b>D</b> | 42 | A | В | © | D        |
| 9  | (A) (B) | © | D   | 26 | A | В          | ©        | <b>D</b> | 43 | A | В | © | D        |
| 10 | (A) (B) | 0 | D   | 27 | A | В          | ©        | <b>D</b> | 44 | A | В | © | D        |
| 11 | (A) (B) | © | D   | 28 | A | В          | ©        | <b>D</b> | 45 | A | В | © | D        |
| 12 | A B     | © | D   | 29 | A | В          | ©        | D        | 46 | A | В | © | D        |
| 13 | (A) (B) | © | D   | 30 | A | lacksquare | <b>©</b> | D        | 47 | A | В | © | D        |
| 14 | (A) (B) | © | D   | 31 | A | В          | ©        | <b>D</b> | 48 | A | В | © | D        |
| 15 | (A) (B) | © | D   | 32 | A | lacksquare | ©        | D        | 49 | A | В | © | D        |
| 16 | A B     | © | (D) | 33 | A | В          | ©        | <b>D</b> | 50 | A | В | © | <b>D</b> |
| 17 | (A) (B) | © | D   | 34 | A | В          | ©        | D        |    |   |   |   |          |

### For Official Use only

| MCQ            | : | [ | ] |                       |
|----------------|---|---|---|-----------------------|
| Short Question | : | [ | ] |                       |
| Long Question  | : | [ | ] |                       |
| Total Marks    | : | [ | ] | Signature of Examiner |

of the state of th

### Section A: MCQ

### Fill the appropriate circle in the OMR answer sheet at the top page.

 $1 \times 50 = 50$ 

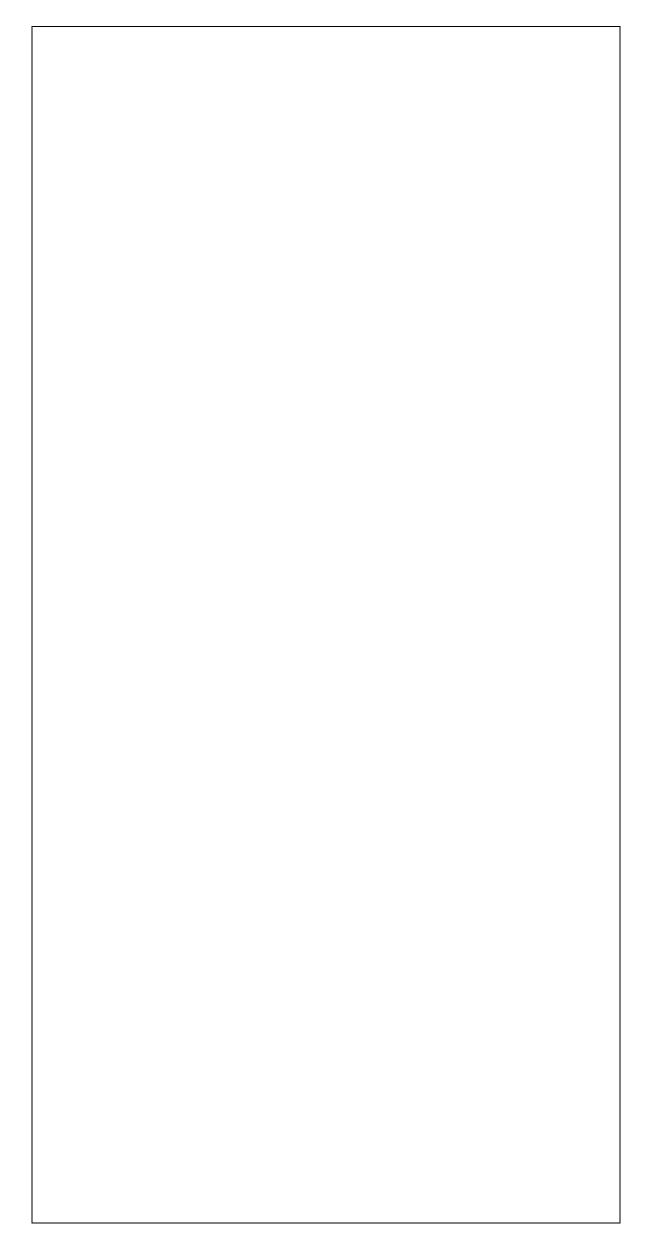
| 1 | Direct Current (DC) is                                                                 |                                                                              |
|---|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|   | A) A measure of electric potential or electromotive force                              | C) Product of volt and power                                                 |
|   | B) Current reverses in regular and recurring intervals of time                         | D) Non-varying unidirectional current                                        |
| 2 | Power factor is unity for                                                              |                                                                              |
|   | A) Inductive circuit                                                                   | C) Resistive circuit                                                         |
|   | B) Capacitive circuit                                                                  | D) Inductive-Capacitive circuit                                              |
| 3 | In an electrical circuit, KVA unit can be                                              |                                                                              |
|   | A) Only for real power                                                                 | C) Only for capacitive power                                                 |
|   | B) Only for inductive power                                                            | D) Both real and inductive and, or capacitive power                          |
| 4 | Kelvin Scale is the temperature standard for                                           |                                                                              |
|   | A) Scientific purpose                                                                  | C) Both scientific and engineering purpose                                   |
|   | B) Engineering purpose                                                                 | D) Measurement of human body temperature                                     |
| 5 | In Fahrenheit Scale, freezing and boiling ter                                          | mperature in degree at air pressure are                                      |
|   | A) 0 & 100                                                                             | C) 100 & 212                                                                 |
|   | B) 32 & 212                                                                            | D) 0 & 32                                                                    |
| 6 | 1 kCal can raise the temperature of water by                                           | 1 degree centigrade of                                                       |
|   | A) 0.5 kg                                                                              | C) 2 kg                                                                      |
|   | B) 1.5 kg                                                                              | D) 1 kg                                                                      |
| 7 | Specific heat of water is                                                              |                                                                              |
|   | A) 2400 Jules per kg degree centigrade                                                 | C) 3200 Jules per kg degree centigrade                                       |
|   | B) 2300 Jules per kg degree centigrade                                                 | D) 4200 Jules per kg degree centigrade                                       |
| 8 | Change of state of a material from one state                                           | to another is known as                                                       |
|   | A) Phase change                                                                        | C) Boiling point                                                             |
|   | B) Melting point                                                                       | D) Vaporization                                                              |
| 9 | The latent heat of fusion of a substance is the liquid  A) With increasing temperature | the heat required to convert 1kg solid into  C) Without changing temperature |
|   | B) With decreasing temperature                                                         | D) None of the above                                                         |
|   |                                                                                        |                                                                              |

| 10 | Relative Humidity affects                           |                                                 |
|----|-----------------------------------------------------|-------------------------------------------------|
|    | A) Saturation condition                             | C) Unsaturated condition                        |
|    | B) Comfort condition                                | D) Uncomfortable condition                      |
| 11 | The viscosity of a fluid is decreasing with         |                                                 |
|    | A) Increasing pressure                              | C) Increasing temperature                       |
|    | B) Decreasing temperature                           | D) None of the above                            |
| 12 | Broadly, energy can be classified as                |                                                 |
|    | A) Potential, chemical and stored mechanical energy | C) Kinetic, gravitational and nuclear energy    |
|    | B) Potential and kinetic energy.                    | D) Radiant, motion, sound and electrical energy |
| 13 | Heat is transferred from hot to cold body by        | y                                               |
|    | A) 5 primary modes                                  | C) 3 primary modes                              |
|    | B) 4 primary modes                                  | D) None of the above                            |
| 14 | Conduction is the primary mode of heat tra          | nsfer through                                   |
|    | A) Air                                              | C) Gas                                          |
|    | B) Solid                                            | D) Liquid                                       |
| 15 | For the transport of heat, Radiation Mode r         | equires                                         |
|    | A) Gas                                              | C) Solid                                        |
|    | B) Liquid                                           | D) None of the above                            |
| 16 | Temperature change while heat transferred           | to a substance, is often referred to as         |
|    | A) Latent heat                                      | C) Superheat                                    |
|    | B) Sensible heat                                    | D) Specific heat                                |
| 17 | Renewable energy sources are                        |                                                 |
|    | A) Exhaustible                                      | C) Depletionable                                |
|    | B) Limited                                          | D) Inexhaustible                                |
| 18 | Electric conductance is measured in                 |                                                 |
|    | A) Watt                                             | C) Mho                                          |
|    | B) Volt                                             | D) Amp                                          |
| 19 | Solar insolation is the greatest when the sur       | rface is                                        |
|    | A) Normal to the Sun                                | C) Inclined to the Sun by 45°                   |
|    | B) Inclined to the Sun by 23°                       | D) None of the above                            |
| 20 | Grid connected solar systems may have               |                                                 |
|    | A) Only PV modules                                  | C) PV modules and inverters                     |
|    | B) PV modules and batteries                         | D) All of the above except PV modules           |

| 21 | Renewable energy sources include                                                                                                 |                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|    | A) Sunlight, bio-mass, sea-tide, wave etc.                                                                                       | C) Geothermal, potential difference of sea-level, diesel etc |
|    | B) Nuclear, wind, hydro, HFO etc.                                                                                                | D) Natural gas, falling water, crude oil                     |
|    |                                                                                                                                  | etc.                                                         |
| 22 | The wattage output of a PV module is rated                                                                                       | in term of                                                   |
|    | A) Peak voltage                                                                                                                  | C) Peak kVAR                                                 |
|    | B) Peak Ampere                                                                                                                   | D) Peak Watt                                                 |
| 23 | Mandatory devices for grid connected solar                                                                                       | system are                                                   |
|    | A) Bidirectional meter and ac inverter                                                                                           | C) Solar generation meter and consumer meter                 |
|    | B) Inverter and battery                                                                                                          | D) Solar generation meter and charge controller              |
| 24 | Average speed of wind to run a wind turbin                                                                                       | e in average rotation is                                     |
|    | A) 15 km/h                                                                                                                       | C) 29 km/h                                                   |
|    | B) 25 km/h                                                                                                                       | D) 22 km/h                                                   |
| 25 | A wind turbine can produce usable energy i                                                                                       | n Cut-in Speed                                               |
|    | A) Reliably                                                                                                                      | C) Exactly                                                   |
|    | B) Moderately                                                                                                                    | D) Poorly                                                    |
| 26 | Which of the following is the concept of ma                                                                                      | aterial balance based upon?                                  |
|    | A) Conservation of mass                                                                                                          | C) Conservation of momentum                                  |
|    | B) Conservation of energy                                                                                                        | D) Conservation of Volume                                    |
| 27 | Theoretical flame temperature is defined for                                                                                     | r which process?                                             |
|    | A) Isothermal                                                                                                                    | C) Isobaric                                                  |
|    | B) Adiabatic                                                                                                                     | D) Isochoric                                                 |
| 28 | If the difference between dry bulb and wet l                                                                                     | bulb temperature of air increases, the                       |
|    | humidity of the air                                                                                                              |                                                              |
|    | A) increases                                                                                                                     | C) remains constant                                          |
|    | B) decreases                                                                                                                     | D) none of the above                                         |
| 29 | In a manufacturing plant, following data ar 100 pieces; specific energy consumpti consumption - 95 kWh/piece. The fixed month is | on - 100 kWh/piece; variable energy                          |
|    | A) 500 kWh                                                                                                                       | C) 10,000 kWh                                                |
|    | B) 9, 500 kWh                                                                                                                    | D) None of the above                                         |
| 30 | What is the average molecular weight of air                                                                                      | containing 79% N <sub>2</sub> (molecular wt. = 28)           |
|    | and the balance $O_2$ (molecular wt. = 32)?                                                                                      |                                                              |
|    | A) 30.4                                                                                                                          | C) 24.4                                                      |
|    | B) 56.8                                                                                                                          | D) 28.9                                                      |

| 31 | If the accumulation in a system is zero, the                                                                                             | state of the system is                                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | A) Transition state                                                                                                                      | C) Unsteady state                                                                                                                                       |
|    | B) Steady state                                                                                                                          | D) None of the above                                                                                                                                    |
| 32 | The lumen depreciation factor of a lighting                                                                                              | g system is 0.9 and the dirt depreciation                                                                                                               |
|    | factor is 0.8. What is the overall light loss                                                                                            | factor?                                                                                                                                                 |
|    | A) 0.82                                                                                                                                  | C) 0.9                                                                                                                                                  |
|    | B) 0.72                                                                                                                                  | D) 1.7                                                                                                                                                  |
| 33 | An electricity rate structure charged by a ut day is called a                                                                            | ility that varies for different hours of the                                                                                                            |
|    | A) Demand ratchet                                                                                                                        | C) Time of use rate                                                                                                                                     |
|    | B) Demand charge                                                                                                                         | D) Tiered rate                                                                                                                                          |
| 34 | Which of the following is a potential applic                                                                                             | eation for an infrared camera                                                                                                                           |
|    | A) Finding faulty electrical connections or overloaded circuits                                                                          | C) Identifying mechanical faults such as excessive bearing friction                                                                                     |
|    | B) Determining area of heat loss from a building                                                                                         | D) All of the above                                                                                                                                     |
| 35 | Which of the following systems would be n                                                                                                | nost suitable to have measurements taken                                                                                                                |
|    | with a bourdon gauge?                                                                                                                    |                                                                                                                                                         |
|    | A) Lighting                                                                                                                              | C) Building envelope                                                                                                                                    |
|    | B) Electrical supply                                                                                                                     | D) Boiler                                                                                                                                               |
| 36 | When a capacitor bank is added to an electropower factor is increased because                                                            |                                                                                                                                                         |
|    | A) total reactive power is increased                                                                                                     | C) total real power is increased                                                                                                                        |
|    | B) total reactive power is decreased.                                                                                                    | D) total real power is decreased                                                                                                                        |
| 37 | At 100% load what is typically the largest t                                                                                             | ype of loss within an AC motor?                                                                                                                         |
|    | A) Friction and windage losses                                                                                                           | C) Stray load losses                                                                                                                                    |
|    | B) Resistive losses                                                                                                                      | D) Core losses                                                                                                                                          |
| 38 | Which of the following can be used to assess envelope during an energy audit?                                                            | ss both HVAC systems and the building                                                                                                                   |
|    | A) Psychrometer                                                                                                                          | C) Chemical Smoke                                                                                                                                       |
|    | B) Draft Gauge                                                                                                                           | D) Anemometer                                                                                                                                           |
| 39 | Which of the following descriptions of a ASHRAE Level 1 audit?                                                                           | an energy audit process is most likely an                                                                                                               |
|    | A) An analysis of historical utility bills<br>and benchmarking of the Energy Use<br>Index to other similar buildings                     | C) Field testing and measurement of systems is carried out to calculate the potential savings of energy conservation measures and determine their costs |
|    | B) An analysis of current energy use and cost with a walk-through of the building to identify low and no cost energy efficiency measures | D) A detailed survey of the building with an analysis of energy end-uses                                                                                |

|                | Energy is consumed by all sectors of the ecc<br>sector in Bangladesh is currently the largest<br>A) Agriculture                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | B) Commercial                                                                                                                                                                                                                                                                                                                                                 | D) Domestic                                                                                                                                                                                                                                                                                                                                                                                 |
| 41             | Energy Intensity is the ratio of                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
|                | A) Fuel Consumption / GDP                                                                                                                                                                                                                                                                                                                                     | C) GDP/ Energy Consumption                                                                                                                                                                                                                                                                                                                                                                  |
|                | B) GDP/Fuel Consumption                                                                                                                                                                                                                                                                                                                                       | D) Energy Consumption / GDP                                                                                                                                                                                                                                                                                                                                                                 |
| 42             | In an industry the billed electricity consumptive fixed electricity consumption of the plant is consumption of 20 kWh/ton. Calculate the plant is A) 25000 tonnes                                                                                                                                                                                             | 30000 kWh and with a variable electricity                                                                                                                                                                                                                                                                                                                                                   |
|                | B) 30000 tonnes                                                                                                                                                                                                                                                                                                                                               | D) None of the above                                                                                                                                                                                                                                                                                                                                                                        |
| 43             | Diagrammatic representation of input and o                                                                                                                                                                                                                                                                                                                    | utput energy streams of an equipment or                                                                                                                                                                                                                                                                                                                                                     |
|                | system is known as A) Mollier diagram                                                                                                                                                                                                                                                                                                                         | C) Psychrometric chart                                                                                                                                                                                                                                                                                                                                                                      |
|                | B) Sankey diagram                                                                                                                                                                                                                                                                                                                                             | D) Balance diagram                                                                                                                                                                                                                                                                                                                                                                          |
| 44             | As the "approach" increases while other pareffectiveness of a cooling tower                                                                                                                                                                                                                                                                                   | rameters remain constant, the                                                                                                                                                                                                                                                                                                                                                               |
|                | A) increases                                                                                                                                                                                                                                                                                                                                                  | C) decreases                                                                                                                                                                                                                                                                                                                                                                                |
|                | B) remains unchanged                                                                                                                                                                                                                                                                                                                                          | D) none of the above                                                                                                                                                                                                                                                                                                                                                                        |
| 45             | Which of the following statistical technique between variables and enables to find stands                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                           |
|                | A) linear regression analysis                                                                                                                                                                                                                                                                                                                                 | C) moving annual total                                                                                                                                                                                                                                                                                                                                                                      |
|                | B) time-dependent energy analysis                                                                                                                                                                                                                                                                                                                             | D) CUSUM                                                                                                                                                                                                                                                                                                                                                                                    |
| 46             | Which of the following is false?                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
| 40             | which of the following is false.                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
| 40             | A) electricity is high-grade energy                                                                                                                                                                                                                                                                                                                           | C) low grade energy is better used for applications like melting of metals rather than heating water for bath                                                                                                                                                                                                                                                                               |
| 40             | _                                                                                                                                                                                                                                                                                                                                                             | applications like melting of metals rather                                                                                                                                                                                                                                                                                                                                                  |
| 47             | A) electricity is high-grade energy  B) high grade forms of energy are highly                                                                                                                                                                                                                                                                                 | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal                                                                                                                                                                                                             |
|                | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact                                                                                                                                                                                                                                                             | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal                                                                                                                                                                                                             |
|                | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou                                                                                                                                                                                                                 | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?                                                                                                                                                                       |
|                | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amount A) Hydrogen                                                                                                                                                                                                   | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal nt of heat per kg during combustion?  C) Sulphur                                                                                                                                                            |
| 47             | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou  A) Hydrogen  B) Carbon  In a boiler, air preheater is installed  A) Before the economizer                                                                                                                      | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater                                                                                                                       |
| 47             | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou A) Hydrogen B) Carbon  In a boiler, air preheater is installed A) Before the economizer B) after the economizer                                                                                                 | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater  D) after Electrostatic Precipitator (ESP)                                                                            |
| 47<br>48       | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou  A) Hydrogen  B) Carbon  In a boiler, air preheater is installed  A) Before the economizer                                                                                                                      | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater  D) after Electrostatic Precipitator (ESP)                                                                            |
| 47<br>48       | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou A) Hydrogen  B) Carbon  In a boiler, air preheater is installed  A) Before the economizer  B) after the economizer  Which one of the following is utilized when A) Gross Calorific Value  B Lower Heating Value | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater D) after Electrostatic Precipitator (ESP) a fuel is burned in an engine? C) Higher Heating Value  D) All of the above |
| 47<br>48       | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou A) Hydrogen  B) Carbon  In a boiler, air preheater is installed  A) Before the economizer  B) after the economizer  Which one of the following is utilized when A) Gross Calorific Value                        | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater D) after Electrostatic Precipitator (ESP) a fuel is burned in an engine? C) Higher Heating Value  D) All of the above |
| 47<br>48<br>49 | A) electricity is high-grade energy  B) high grade forms of energy are highly ordered and compact  Which of the following releases large amou A) Hydrogen  B) Carbon  In a boiler, air preheater is installed  A) Before the economizer  B) after the economizer  Which one of the following is utilized when A) Gross Calorific Value  B Lower Heating Value | applications like melting of metals rather than heating water for bath  D) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal  nt of heat per kg during combustion?  C) Sulphur  D) Nitrogen  C) Before superheater D) after Electrostatic Precipitator (ESP) a fuel is burned in an engine? C) Higher Heating Value  D) All of the above |

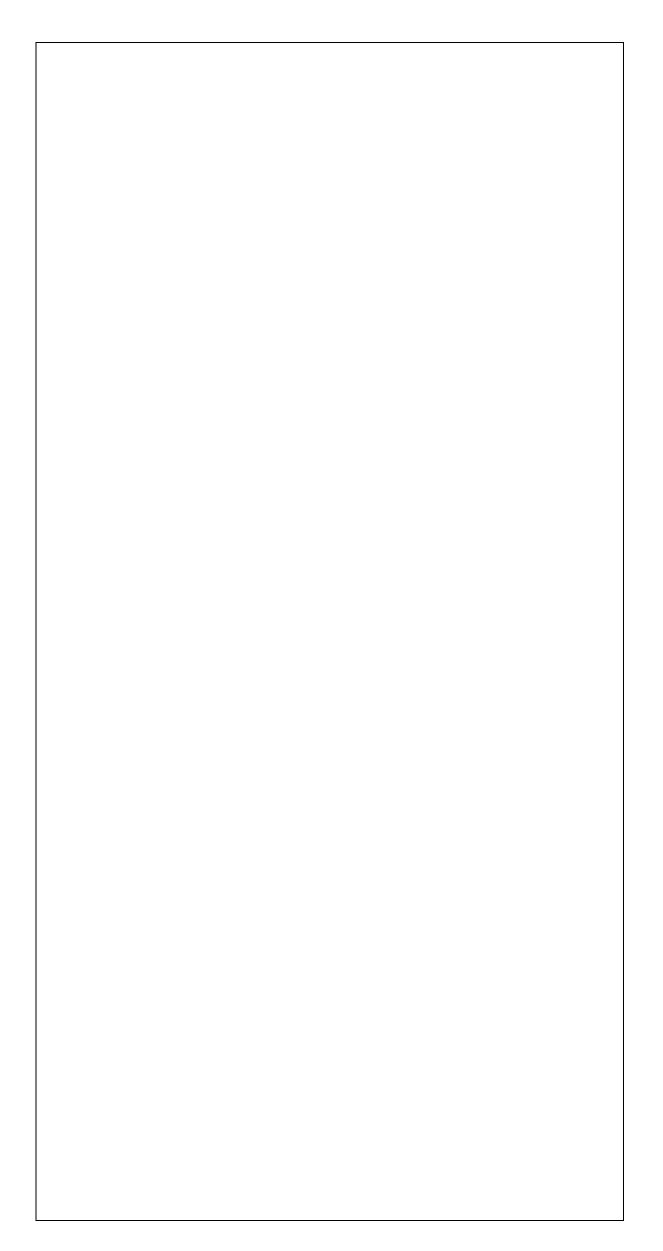

# **Section B: Short Question**

|    |                                                                             | Marks |
|----|-----------------------------------------------------------------------------|-------|
| 01 | A machine needs force to move. If work done by the machine is 6 kJ and      | 5     |
|    | distance moved is 100 m, find out the required force. In addition, find out | _     |
|    | the average power is utilized if the machine moved for 1 minute.            |       |
|    | the average power is utilized if the machine moved for 1 minute.            |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
| 00 | A 1 1 7 1 W 1 (DE 1) ' (1' 7'A C 1 1' W) (' 1                               | ~     |
| 02 | A 1.15 kW cooker (PF=1) is taking 5A from supply line. What is the          | 5     |
|    | supply line voltage and consumed energy when switched on for 45             |       |
|    | minutes?                                                                    |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             |       |
|    |                                                                             | !     |
|    |                                                                             |       |

| - | 03   What is landfill gas? How is it formed?       | 5 |
|---|----------------------------------------------------|---|
| - | 04 What is Energy intensity and what it indicates? | 5 |
|   |                                                    |   |

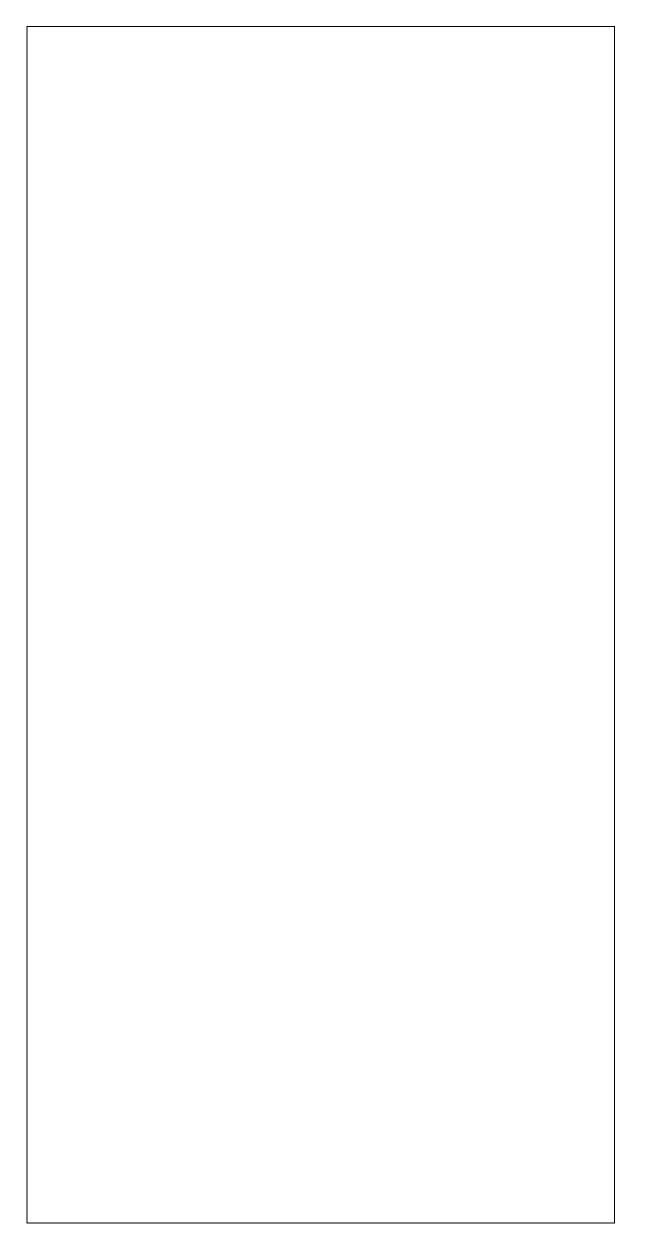
| 05 | A water pumping station fills a tank at a fixed rate. The head and flow rate are constant and hence the power drawn by the pump is always same. The pump delivers 80 litres per second. The power consumption was measured as 84 kW. Calculate the cost of the energy consumption for pumping 28,80,000 litres of water to the reservoir. Assume, the average cost of one unit energy is 8 taka. | 5 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | cost of one unit energy is a taka.                                                                                                                                                                                                                                                                                                                                                               |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  |   |

| 06 | A home-owner plans to replace all his lighting and cooling appliances with energy efficient products. In his home, there are 10 tube-lights (40 watt each) and 5 electric fans (100 watt each). He would like to replace them with LED lights (8 watt bulb costing 250 taka each) and 5-star rating fans (60 watt 5-star rating fan costing 3000 taka each). What will be the payback period to recover his investment if he implements his plan? Assume, all other required data considering Bangladesh environmental conditions and energy costs. | 5 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 07 | In a textile plant, the monthly energy consumption is 7,00,000 kWh of                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|    | electricity, 40 kL of furnace oil (specific gravity = 0.92) for thermic fluid heater, 360 tonne of coal for steam boiler and 10 kL of HSD (specific gravity = 0.885) for material handling equipment. Compute the annual energy consumption in terms of Metric Tonne of Oil Equivalent (MTOE) for the plant. Given Data: (1 kWh = 860 kcal, GCV of coal = 3450 kcal/kg, GCV of furnace oil = 10,000 kcal/kg, GCV of HSD = 10,500 kcal/kg, GCV of rice husk = 3100 kcal/kg, 1 kg oil equivalent = 10,000 kcal)                                       | 5 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |

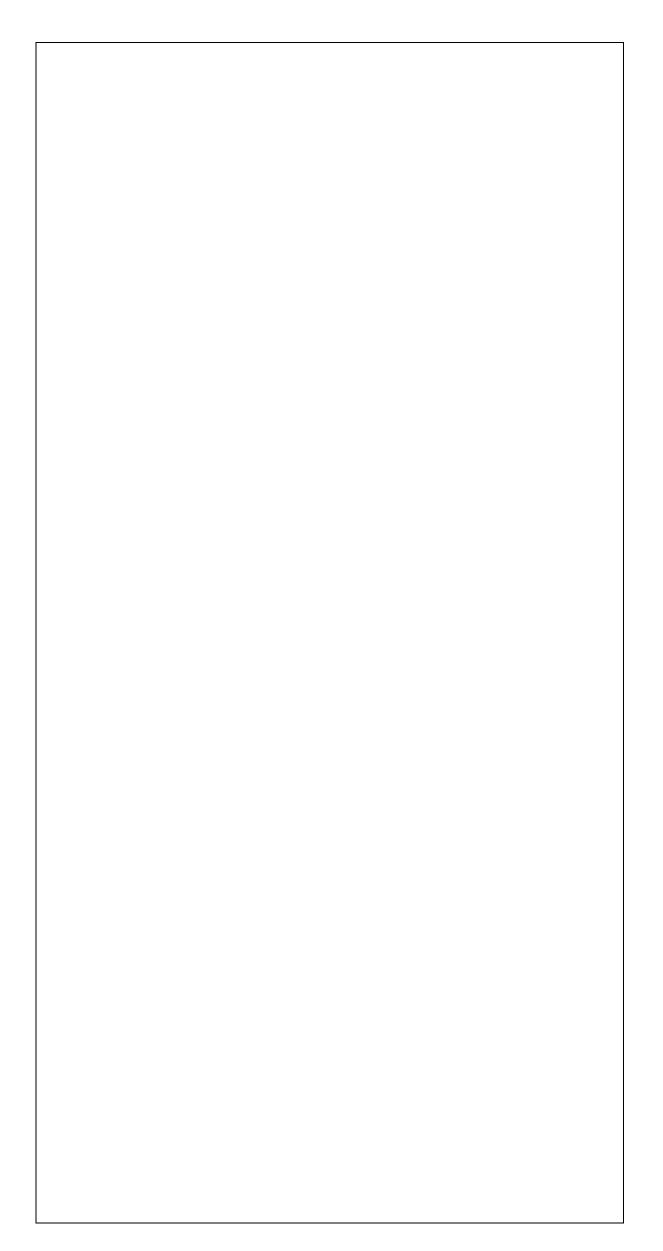



| 08 | Explain<br>Manager | Plan-Do-<br>ment Syste | Check-Act<br>em (EnMS) | (PDCA) | cycle | in | the | context | of | Energy | 5 |
|----|--------------------|------------------------|------------------------|--------|-------|----|-----|---------|----|--------|---|
|    |                    |                        |                        |        | _     | _  |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |
|    |                    |                        |                        |        |       |    |     |         |    |        |   |

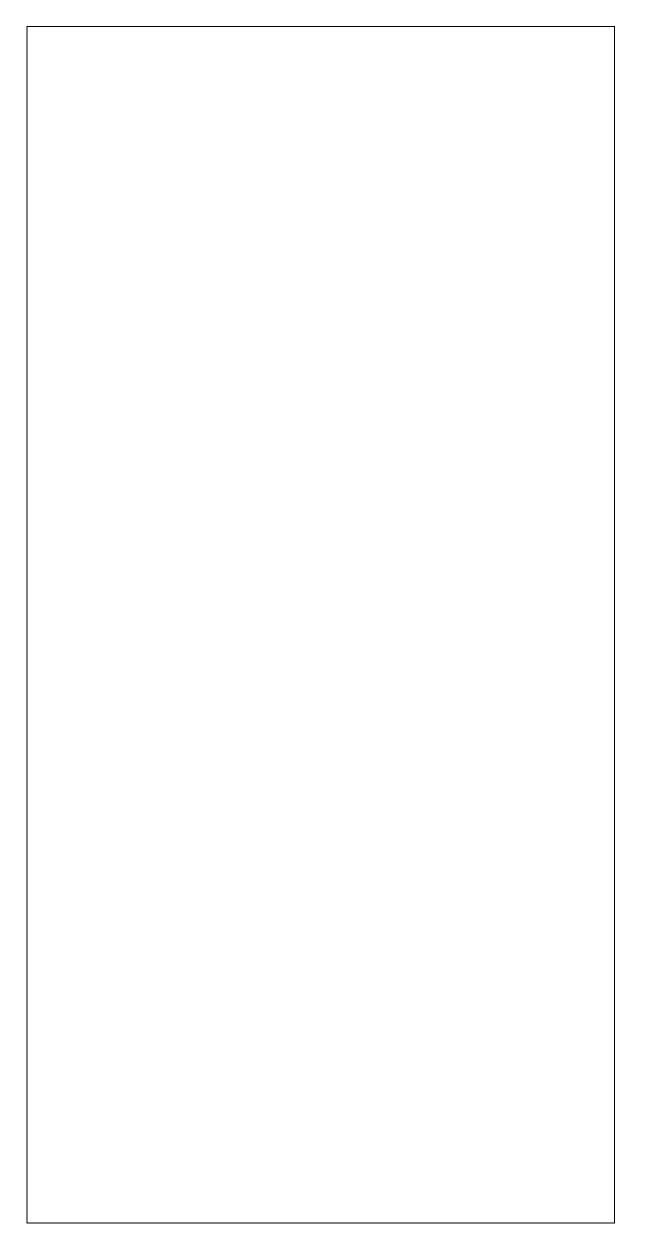
# **Section C: Long Question**


|    |                                                                            | Marks |
|----|----------------------------------------------------------------------------|-------|
| 01 | An evaporation is to be fed with 10,000 kg/h of a solution having 1%       | 10    |
|    | solids at 38°C and to be concentrated to 2% solids. Steam is entering at a |       |
|    | total enthalpy of 640 kcal/kg and the condensate leaves at 100°C. If       |       |
|    | enthalpies of feed are 38.1 kcal/kg, product solution is 100.8 kcal/kg and |       |
|    | vapor is 640 kcal/kg, find the mass of the vapor formed and the steam      |       |
|    | used per hour.                                                             |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |
|    |                                                                            |       |

|    | Describe EE & Constantials by different sectors in Daniel dech | 10 |
|----|----------------------------------------------------------------|----|
| 02 | Describe EE&C potentials by different sectors in Bangladesh.   | 10 |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |
|    |                                                                |    |




| 03 | In a Chlor-Alkali plant, an evaporator was designed to concentrate 500 kg/h of liquor containing solids of 7 % w/w (weight by weight) to 45 % solids w/w in the output. Presently the output from evaporator has 30 % solids w/w. The energy manager suggested overhauling the evaporator to achieve the design rate of solids w/w in the output. Calculate the percentage improvement in water removal in the evaporator after overhauling of the evaporator. | 10 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |


| A                                                                                                                                              | process plant is                                                                           | planning to implement a                                                                                                     | waste heat recovery project.                      |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                |                                                                                            |                                                                                                                             | commissioning are given in                        |  |  |  |  |  |  |  |
|                                                                                                                                                |                                                                                            |                                                                                                                             |                                                   |  |  |  |  |  |  |  |
| a)                                                                                                                                             | Construct a PER                                                                            | the table below along with their duration and dependency.  a) Construct a PERT/CPM network diagram for the above project.   |                                                   |  |  |  |  |  |  |  |
| a) Construct a PERT/CPM network diagram for the above project. b) Compute the earliest start, earliest finish, latest start, latest finish and |                                                                                            |                                                                                                                             |                                                   |  |  |  |  |  |  |  |
| b) Compute the earliest start, earliest finish, latest start, latest finish and slack for all the activities.                                  |                                                                                            |                                                                                                                             |                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                | slack for all the a                                                                        | cliest start, earliest finish, activities.                                                                                  |                                                   |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a                                                                        | cliest start, earliest finish, activities.                                                                                  | , latest start, latest finish and                 |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a Compute the proj Identify the critic                                   | cliest start, earliest finish, activities.  ject duration.  cal activities and the critic                                   | al path(s).                                       |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a                                                                        | cliest start, earliest finish, activities.                                                                                  | al path(s).  Time in Week                         |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a Compute the proj Identify the critic  Activity  A                      | cliest start, earliest finish, activities.  ject duration.  cal activities and the critic                                   | ral path(s).  Time in Week 3                      |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a Compute the proj Identify the critic Activity                          | cliest start, earliest finish, activities. ject duration. cal activities and the critic                                     | al path(s).  Time in Week                         |  |  |  |  |  |  |  |
| c)                                                                                                                                             | slack for all the a Compute the proj Identify the critic  Activity  A                      | cliest start, earliest finish, activities. ject duration. cal activities and the critic                                     | ral path(s).  Time in Week 3                      |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A B                    | cliest start, earliest finish, activities.  ject duration.  cal activities and the critic  Predecessor  -  -  A  A          | ral path(s).  Time in Week  3  5  4  6            |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C                | cliest start, earliest finish, activities.  ject duration. cal activities and the critic  Predecessor  A                    | ral path(s).  Time in Week  3  5  4               |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D             | cliest start, earliest finish, activities.  ject duration.  cal activities and the critic  Predecessor  -  -  A  A          | ral path(s).  Time in Week  3  5  4  6            |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E          | Predecessor  A  A  C                                                                                                        | ral path(s).  Time in Week  3  5  4  6  5         |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E          | cliest start, earliest finish, activities. ject duration. cal activities and the critic  Predecessor  A A C C               | Time in Week  3  5  4  6  5  3                    |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E  F  G    | Predecessor  A  A  C  C  B & D                                                                                              | Time in Week  3  5  4  6  5  3  2                 |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E  F  G  H | cliest start, earliest finish, activities. ject duration. cal activities and the critic  Predecessor  A A C C C B & D D & E | al path(s).  Time in Week  3  5  4  6  5  3  2  1 |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E  F  G  H | cliest start, earliest finish, activities. ject duration. cal activities and the critic  Predecessor  A A C C C B & D D & E | al path(s).  Time in Week  3  5  4  6  5  3  2  1 |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E  F  G  H | cliest start, earliest finish, activities. ject duration. cal activities and the critic  Predecessor  A A C C C B & D D & E | al path(s).  Time in Week  3  5  4  6  5  3  2  1 |  |  |  |  |  |  |  |
| c)                                                                                                                                             | Slack for all the a Compute the proj Identify the critic  Activity  A  B  C  D  E  F  G  H | cliest start, earliest finish, activities. ject duration. cal activities and the critic  Predecessor  A A C C C B & D D & E | al path(s).  Time in Week  3  5  4  6  5  3  2  1 |  |  |  |  |  |  |  |



| 05 | A medium size chemical plant receives<br>generates electricity from coal based Capt<br>also used for process requirements. The<br>neighbouring plant. The annual energy deta | ive Power Plant (CPP). Coal is fine coal from CPP is sold to | 0 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---|
|    | Electricity purchased from grid                                                                                                                                              | 5 MU                                                         |   |
|    | Electricity exported to grid                                                                                                                                                 | 11 MU                                                        |   |
|    | Power generation from CPP                                                                                                                                                    | 36 MU                                                        |   |
|    | Power Supplied from CPP to Process plant                                                                                                                                     | 25 MU                                                        |   |
|    | Fine coal sold to neighboring unit                                                                                                                                           | 1000 ton                                                     |   |
|    | 1 I                                                                                                                                                                          | 5000 ton                                                     |   |
|    | Coal used for process plant                                                                                                                                                  |                                                              |   |
|    | Coal used for process plant  GCV of coal                                                                                                                                     | 4500 kcal/kg                                                 |   |
|    |                                                                                                                                                                              | <del> </del>                                                 |   |
|    | GCV of coal                                                                                                                                                                  | 4500 kcal/kg                                                 |   |
|    | GCV of coal  Heat rate of CPP                                                                                                                                                | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |
|    | GCV of coal  Heat rate of CPP  Annual Operating Hours  Calculate the following: a) Energy usage in TOE (Tons of Oil Equire) b) Coal used in CPP                              | 4500 kcal/kg 3500 kcal/kWh 7200  valent)                     |   |



|    | a) Write down the stone                                |                   | wing weing CUCUM area                                             | 25    |
|----|--------------------------------------------------------|-------------------|-------------------------------------------------------------------|-------|
| 06 | a period. b) Develop a table using for 8 months period |                   | ving using CUSUM over calculate energy savings 2000 MT per month. | 2 x 5 |
|    | Month                                                  | Actual SEC kWh/MT | Predicted SEC kWh/MT                                              |       |
|    | May                                                    | 1225              | 1250                                                              |       |
|    | June                                                   | 1227              | 1250                                                              |       |
|    | July                                                   | 1240              | 1250                                                              |       |
|    | Aug                                                    | 1245              | 1250                                                              |       |
|    | Sep                                                    | 1238              | 1250                                                              |       |
|    | Oct                                                    | 1257              | 1250                                                              |       |
|    | Mare                                                   | 1248              | 1250                                                              |       |
|    | Nov<br>Dec                                             | 1264              | 1250                                                              |       |

